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Abstract. The Nambu–Jona–Lasinio model of the deuteron suggested by Nambu and Jona–Lasinio (Phys.
Rev. 124 (1961) 246) is formulated from the first principles of QCD. The deuteron appears as a neutron–
proton collective excitation, i.e. a Cooper np–pair, induced by a phenomenological local four–nucleon
interaction in the nuclear phase of QCD. The model describes the deuteron coupled to itself, nucleons
and other particles through one–nucleon loop exchanges providing a minimal transfer of nucleon flavours
from initial to final nuclear states and accounting for contributions of nucleon–loop anomalies which are
completely determined by one–nucleon loop diagrams. The dominance of contributions of nucleon–loop
anomalies to effective Lagrangians of low–energy nuclear interactions is justified in the large NC expansion,
where NC is the number of quark colours.

PACS. 11.10.-z Field theory – 11.10.Ef Lagrangian and Hamiltonian approach – 11.10.St Band and
unstable states; Bethe–Salpeter equations – 12.90.+b Miscellaneous theoretical ideas and models – 21.30.Fe
Forces in hadronic systems and effective interactions

1 Introduction

In the beginning of sixties Nambu and Jona–Lasinio sug-
gested a dynamical theory of elementary particles [1,2],
the Nambu–Jona–Lasinio (NJL) model, in which nucleons
and mesons are derived in a unified way from a fundamen-
tal spinor field on the basis of the relativistic extension of
the BCS (Bardeen–Cooper–Schrieffer) theory of supercon-
ductivity [3]. Nowadays the NJL model has found a great
support in the form of the extended Nambu–Jona–Lasinio
(ENJL) model with chiral U(3) × U(3) symmetry as an
effective phenomenological approximation of low–energy
Quantum Chromodynamics (QCD) [4–6]. Chiral pertur-
bation theory within the ENJL model with a linear and
a non–linear realization of chiral U(3) × U(3) symmetry
has been developed in [7,8] and [9], respectively. In the
ENJL model mesons are described as qq̄ collective excita-
tions, the qq̄ Cooper pairs, induced by phenomenological
local four–quark interactions. In turn, the low–lying octet
and decuplet of baryons can be considered in the NJL
approach as three–quark qqq collective excitations pro-
duced by phenomenological local six–quark interactions
[8]. As has been shown in [4–11] the ENJL model with
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chiral U(3)× U(3) symmetry describes at the quark level
perfectly well strong low–energy interactions of hadrons
in the form of Effective Chiral Lagrangians [12,13].

In parallel to the description of mesons as a collec-
tive excitations of a unified spinor field Nambu and Jona–
Lasinio suggested to treat the deuteron as a neutron–
proton collective excitation, i.e. some kind of a Cooper
np–pair [2]. A phenomenological local four–nucleon inter-
action has been written in the form [2]:

Lint(x) =
1
4
g0 [ψ̄(x)γµψc(x)ψ̄c(x)γµψ(x)

+ψ̄(x)σµνψc(x)ψ̄c(x)σµνψ(x)

+ψ̄(x)γµγ5τψc(x) · ψ̄c(x)γµγ5τψ(x)], (1.1)

where ψ(x) is a doublet of the nucleon field, then ψc(x) =
C ψ̄T (x) and ψ̄c(x) = ψT (x)C, C is a charge conjugation
matrix and T is a transposition; τ = (τ1, τ2, τ3) are the
isotopical Pauli matrices, and σµν = (γµγν − γνγµ)/2.

According to the Nambu–Jona–Lasinio prescription [2]
the phenomenological interactions (1.1) should lead to two
bound states: a pseudovector, isoscalar (J = 1+, I = 0)
or the deuteron, where J and I are the total spin and
isospin, respectively, coming from the first two interaction
terms, and a scalar, isovector (J = 0+, I = 1) coming from
the last term. Unfortunately, Nambu and Jona–Lasinio
did not consider the evaluation of the binding energy, the
magnetic dipole and electric quadrupole moments of the
deuteron in their approach to the deuteron as the Cop-
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per np–pair. Such attempts have been undertaken within
the model which has been called the Relativistic field the-
ory model of the deuteron (RFMD) suggested in [14,15].
The RFMD realizes the consideration of the deuteron in
the analogous way to the Nambu–Jona–Lasinio approach
[2]. For the practical evaluation of the low–energy para-
meters characterizing the deuteron there has been sug-
gested in the RFMD that the deuteron couples to itself,
nucleons and other particles through one–nucleon loop ex-
changes providing a minimal transfer of nucleon flavours
from initial to final nuclear states and accounting for con-
tributions of nucleon–loop anomalies which are completely
determined by one–nucleon loop diagrams. Then, there
has been argued the dominant role of one–nucleon loop
anomalies for the one–nucleon loop exchanges describing
strong low–energy nuclear forces. The main problem of
the attempts expounded in [14,15] as well as the origi-
nal idea of the Nambu and Jona–Lasinio to describing the
deuteron as Cooper np–pair [2] is in a poor relation to
QCD.

In this paper we show that the consideration of the
deuteron as a Cooper np–pair induced by a phenomeno-
logical local four–nucleon interaction and the description
of low–energy couplings of the deuteron to itself, nucleons
and other particles through one–nucleon loop exchanges,
where nucleon–loop anomalies play the dominant role, is
fully motivated by low–energy QCD. The deuteron ap-
pears as a Cooper np–pair in the nuclear phase of QCD
and couples to itself and other particles through the one–
nucleon loop exchanges. The dominance of nucleon–loop
anomalies occurs naturally as a consequence of the large
NC expansion, where NC is the number of quark colour
degrees of freedom [16,17]. Nowadays the large NC ex-
pansion suggested by ’t Hooft [16] is accepted as a non–
perturbative approach of low–energy QCD to the analysis
of strong couplings of hadrons and nuclei at low energies
[17].

Below we would call the Nambu–Jona–Lasinio ap-
proach to the deuteron based on phenomenological local
four–nucleon interactions like those given by (1.1) as the
Nambu–Jona–Lasinio model of light nuclei or shortly the
nuclear Nambu–Jona–Lasinio model with the abbrevia-
tion the NNJL model.

The paper is organized as follows. In Sect. 2 we dis-
cuss the non–perturbative phases of QCD and formulate
the NNJL model from the first principles of QCD. In
Sect. 3 we derive the effective Lagrangian for the free
deuteron field induced in the nuclear phase of QCD as
the neutron–proton collective excitation (the Cooper np–
pair) by a phenomenological local four–nucleon interac-
tion. We demonstrate dominant role of one–nucleon loop
anomalies for the formation of the effective Lagrangian
of the free deuteron field. In Sect. 4 we investigate the
electromagnetic properties of the deuteron and derive the
effective Lagrangian of the deuteron field coupled to an ex-
ternal electromagnetic field through the magnetic dipole
and electric quadrupole moments. We show that the effec-
tive Lagrangian of the electromagnetic interactions of the
deuteron calculated in the one–nucleon loop approxima-

tion at leading order in the large NC expansion are defined
by the anomalies of one–nucleon loop diagrams and have
the form of well–known phenomenological electromagnetic
interactions introduced by Corben and Schwinger [18] and
Aronson [19] for the description of charged vector boson
fields coupled to an external electromagnetic field. In the
Conclusion we discuss the obtained results.

2 Non–perturbative phases of QCD

The derivation of the NNJL model from the first principles
of QCD goes through three non–perturbative phases of the
quark–gluon system. We call them as: 1) the low–energy
quark–gluon phase (low–energy QCD), 2) the hadronic
phase and 3) the nuclear phase.

The low–energy quark–gluon phase of QCD can be ob-
tained by integrating over fluctuations of quark and gluon
fields at energies above the scale of spontaneous breaking
of chiral symmetry (SBχS) Λχ ' 1 GeV. This results in an
effective field theory, low–energy QCD, describing strong
low–energy interactions of quarks and gluons. The low–
energy quark–gluon phase of QCD characterizes itself by
the appearance of low–energy gluon–field configurations
leading to electric colour fluxes responsible for formation
of a linearly rising interquark potential. The former real-
izes quark confinement.

For the transition to the hadronic phase of QCD one
should, first, integrate out low–energy gluon degrees of
freedom. Integrating over gluon degrees of freedom fluc-
tuating around low–energy gluon–field configurations re-
sponsible for formation of a linearly rising interquark po-
tential one arrives at an effective field theory containing
only quark (q) and anti–quark (q̄) degrees of freedom. This
effective field theory describes strong interactions at en-
ergies below the SBχS scale Λχ ' 1 GeV. The resultant
quark system possesses both a chirally invariant and chi-
rally broken phase. In the chirally invariant phase the ef-
fective Lagrangian of the quark system is invariant under
chiral U(3)× U(3) group. The chirally invariant phase of
the quark system is unstable and the transition to the chi-
rally broken phase is advantageous. The chirally broken
phase characterizes itself by three non–perturbative phe-
nomena: SBχS, hadronization (creation of bound quark
states with quantum numbers of mesons qq̄, qqq̄q̄, baryons
qqq and so on) and confinement. The transition to the
chirally broken phase caused by SBχS accompanies itself
with hadronization. Due to quark confinement all observed
bound quark states should be colourless. As gluon degrees
of freedom are integrated out, in such an effective field the-
ory the entire variety of strong low–energy interactions of
hadrons at energies below the SBχS scale Λχ ' 1 GeV is
described by quark–loop exchanges.

Since nowadays in continuum space–time formulation
of QCD the integration over low–energy gluon–field con-
figurations can be hardly performed explicitly, phenom-
enological approximations of this integration represented
by different effective quark models with chiral U(3)×U(3)
symmetry motivated by QCD are welcomed.
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The most interesting effective quark model allowing
to describe analytically both SBχS and bosonization (cre-
ation of bound qq̄ states with quantum numbers of ob-
served low–lying mesons) is the extended Nambu–Jona–
Lasinio (ENJL) model [4–11] with linear [7,8,10] and non–
linear [9,11] realization of chiral U(3) × U(3) symmetry.
As has been shown in [6] the ENJL model is fully mo-
tivated by low–energy multi–colour QCD with a linearly
rising interquark potential and NC quark colour degrees of
freedom at NC →∞. In the ENJL model mesons are de-
scribed as qq̄ collective excitations (the Cooper qq̄–pairs)
induced by phenomenological local four–quark interac-
tions. Through one–constituent quark–loop exchanges the
Copper qq̄–pairs acquire the properties of the observed
low–lying mesons such as π(140), K(498), η(550), ρ(770),
ω(780), K∗(890) and so on. For the description of low–
lying octet and decuplet of baryons the ENJL model has
been extended by the inclusion of local six–quark interac-
tions responsible for creation of baryons as qqq collective
excitations [8].

Integrating then out low–energy quark–field fluctu-
ations, that can be performed in terms of constituent
quark–loop exchanges, one arrives at the hadronic phase of
QCD containing only local meson and baryon fields. The
couplings of low–lying mesons and baryons are described
by Effective Chiral Lagrangians with chiral U(3) × U(3)
symmetry [4–13].

The nuclear phase of QCD characterizes itself by the
appearance of bound nucleon states – nuclei. In order
to arrive at the nuclear phase of QCD we suggest to
start with the hadronic phase of QCD and integrate out
heavy hadron degrees of freedom, i.e. all heavy baryon
degrees of freedom with masses heavier than masses of
low–lying octet and decuplet of baryons and heavy me-
son degrees of freedom with masses heavier than the
SBχS scale Λχ ' 1 GeV. At low energies the result of
the integration over these heavy hadron degrees of free-
dom can be represented in the form of phenomenological
local many–nucleon interactions. Following the scenario
of the hadronic phase of QCD, where hadrons are pro-
duced by phenomenological local many–quark interactions
as many–quark collective excitations, one can assume that
some of these many–nucleon interactions are responsible
for creation of many–nucleon collective excitations. These
excitations acquire the properties of observed bound nu-
cleon states – nuclei through nucleon–loop and low–lying
meson exchanges. This results in an effective field the-
ory describing nuclei and their low–energy interactions
in analogy with Effective Chiral Lagrangian approaches
[12,13]. Chiral perturbation theory can be naturally in-
corporated into this effective field theory of low–energy
interactions of nuclei.

We would like to emphasize that in this scenario of
the quantum field theoretic formation of nuclei and their
low–energy interactions nuclei are considered as elemen-
tary particles described by local interpolating fields. In
parallel to the Nambu–Jona–Lasinio approach to light nu-
clei [2] the representation of nuclei as elementary particles
has been suggested by Sakita and Goebal [20] and Kim

and Primakoff [21] for the description of electromagnetic
and weak nuclear processes. We develop the quantum field
theoretic approach to the interpretation of nuclei as ele-
mentary particles represented by local interpolating fields
by starting with QCD.

In this scenario the deuteron, being the lightest bound
nucleon state, appears in the nuclear phase of QCD as
the neutron–proton collective excitation (the Cooper np–
pair) induced by a phenomenological local four–nucleon
interaction caused by the contributions of heavy hadron
exchanges at low energies. Through one–nucleon loop ex-
changes the Cooper np–pair with quantum numbers of the
physical deuteron acquires the properties of the physical
deuteron (i) the binding energy εD = 2.225 MeV, (ii) the
magnetic dipole moment µD = 0.857µN, where µN is a
nuclear magneton, (iii) the electric quadrupole moment
QD = 0.286 fm2 [22] and so on.

We would like to emphasize that Sakita and Goebal
[20] by treating the deuteron as an elementary particle
described by a local interpolating field Dµ(x) have calcu-
lated the cross section for the photo–disintegration of the
deuteron γ + D → n + p within the dispersion relation
approach. The more recent analysis of the same process
by using the dispersion relations has been carried out by
Anisovich and Sadovnikova [23] based on the dispersion
relation technique developed by Anisovich et al. [24]. The
dispersion relation approach as well as the NNJL model
is a relativistically covariant one. Within the dispersion
relation approach one deals with directly the amplitudes
of the process of the deuteron coupled to other particles
keeping under the control intermediate states in the form
of the pole and branching point singularities. The residues
at pole singularities are defined by the effective coupling
constants which as usual in the dispersion relation tech-
nique are taken from experimental data. Unlike the disper-
sion relation approach in the NNJL model developing the
Lagrange approach to nuclear forces we focus on the evalu-
ation of the effective coupling constants via the derivation
of the effective Lagrangians of the deuteron coupled to
nucleons and other particles at low energies. These effec-
tive coupling constants are defined in the NNJL model by
one–nucleon loop anomalies related to high–energy NN̄
fluctuations of virtual nucleon (N) and anti–nucleon (N̄)
fields. Thus, the dispersion relation approach to the de-
scription of low–energy interactions of the deuteron and
the NNJL model do not contradict but should complement
each other.

In the form of the path integral formulation of QCD
the non–perturbative phases of QCD can be represented
by the following sequence of transformations. Let us start
with the path integral over the quark q, anti–quark q̄ and
gluon A fields related to a generating functional of quark
and gluon Green functions and defined by

Z =
∫
DqDq̄DAei

∫
d4xLQCD[q̄, q, A]. (2.1)

Integrating over high–energy quark–gluon fluctuations re-
stricted from below by the SBχS scale Λχ ' 1 GeV we
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arrive at the generating functional

Z =
∫
DqDq̄Da ei

∫
d4xLQCD

eff [q̄, q, Ã+ a] (2.2)

describing strong low–energy interactions of quarks and
gluons in the low–energy quark–gluon phase of QCD,
where Ã and a are non–perturbative gluon–field config-
urations responsible for the formation of a linearly rising
interquark potential providing quark confinement and the
gluon–field fluctuations around these gluon–field configu-
rations.

Integrating then over the gluon–field fluctuations a we
obtain the generating functional

Z =
∫
DqDq̄ ei

∫
d4xLeff [q̄, q, local multi− q couplings].

(2.3)

This generating functional describes the effective the-
ory of quarks coupled to each other at energies of order
Λχ ' 1GeV and less. At the phenomenological level the
result of the integration over gluon–field configurations
can be represented in the form of phenomenological lo-
cal multi–quark interactions responsible for the creation
of multi–quark collective excitations. This quark system
is unstable under SBχS and hadronization. By converting
quark degrees of freedom into the hadronic ones or differ-
ently hadronizing the quark system we arrive at the gener-
ating functional given by the path integral over hadronic
degrees of freedom only

Z =
∫
DM`DB`DMhDBh e

i
∫
d4xLeff [M`, B`,Mh, Bh],

(2.4)

where M`, B` and Mh, Bh are local interpolating fields
of mesons and baryons. The indices ` and h correspond
to light hadrons with masses of order of 1 GeV and less
and heavy hadrons with masses much greater than 1 GeV.
For the practical applications to the description of low–
energy couplings of light and heavy hadrons the effec-
tive Lagrangian Leff [M`, B`,Mh, Bh] can be approximated
by Effective Chiral Lagrangians for light hadrons [12,13]
and heavy hadrons [25] as well. The generating functional
(2.4) describes low–energy interactions of hadrons in the
hadronic phase of QCD.

Integrating over heavy baryon degrees of freedom given
by the fields Mh and Bh we get the generating functional
in the form of the path integral over the light hadron de-
grees of freedom

Z =
∫
DM`

× DB` e
i
∫
d4xLeff [M`, B`, local multi−B` couplings].

(2.5)

At low energies the result of the integration over heavy
hadron degrees of freedom can be represented phenomeno-
logically by local multi–baryon couplings some of which

should be responsible for the creation of multi–baryon
excitations with quantum numbers of nuclei. In term of
the local interpolating fields of nuclei the generating func-
tional (2.5) acquires the form

Z =
∫
DM`DB`DDD 3HD 3HeD 4He . . .

× ei
∫
d4xLeff [M`, B`,D, 3H, 3He, 4He, . . .], (2.6)

where D, 3H, 3He and 4He are the local interpolating fields
of the deuteron, the triton, the helium–3 and the helium–
4, respectively. The ellipses stand for a possible contribu-
tion of other nuclei. The generating functional (2.6) de-
scribes the nuclear phase of QCD, when nuclei couple to
each other and light hadrons at low energies. Chiral per-
turbation theory [7,8] is naturally incorporated into this
theory.

3 The deuteron as a Cooper np–pair

In order to describe the deuteron as a Cooper np–pair we
introduce a phenomenological local four–nucleon interac-
tion caused by the integration over heavy hadron degrees
of freedom. First, let us consider the simplest form of this
local four–nucleon interaction

Lint(x) = − g2
V

4M2
N

j†µ(x)jµ(x), (3.1)

where gV is the phenomenological coupling constant of
the NNJL model [14,15], MN = 940 MeV is the nucleon
mass. We neglect here the electromagnetic mass difference
for the neutron and the proton. As has been found in
[14,15] the coupling constant gV is related to the electric
quadrupole moment of the deuteron QD: g2

V = 2π2QDM
2
N

[15].
The nucleon current jµ(x) with the quantum numbers

of the deuteron is defined by [14,15]

jµ(x) = −i [p̄c(x)γµn(x)− n̄c(x)γµp(x)]. (3.2)

Here p(x) and n(x) are the interpolating fields of the pro-
ton and the neutron, N c(x) = C N̄T (x) and N̄ c(x) =
NT (x)C, where C is a charge conjugation matrix and
T is a transposition. In terms of the electric quadrupole
moment of the deuteron the phenomenological local four–
nucleon interaction (3.1) reads

Lint(x) = −1
2
π2QD j

†
µ(x)jµ(x). (3.3)

Now let us discuss the behaviour of the phenomenologi-
cal coupling constant g2

V/4M
2
N from the point of view of

the large NC expansion in QCD with the SU(NC) gauge
group atNC →∞ [16,17]. Suppose, for simplicity, that the
phenomenological four–nucleon interaction (3.1) is caused
by exchanges of the scalar f0(980) and a0(980) mesons
being the lightest states among heavy hadrons we have
integrated out.
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Through a linear realization of chiral U(3)×U(3) sym-
metry and the Goldberger–Treiman relation one can find
that the coupling constant of σ–mesons gσNN, the qq̄–
scalar mesons, coupled to the octet of low–lying baryons
should be of order gσNN ∼ O(

√
NC) at NC → ∞. The

scalar mesons f0(980) and a0(980) are most likely four–
quark states with qqq̄q̄ quark structure [26,27]. In the limit
NC → ∞ such qqq̄q̄ states are suppressed by a factor
1/NC [17]. Thus, an effective coupling constant of low–
energy NN interaction caused by the qqq̄q̄ scalar meson
exchanges should be of order O(1/NC) at NC → ∞. By
taking into account that in QCD with NC → ∞ the nu-
cleon mass MN is proportional to NC [17], MN = NCMq,
where Mq ∼ 300 MeV is the constituent quark mass, we
can introduce the nucleon mass MN in the effective cou-
pling constant as a dimensional parameter absorbing the
factor N2

C , i.e. g2
V/4M

2
N. This is also required by the cor-

rect dependence of the deuteron mass on NC . As a result
the phenomenological coupling constant gV turns out to
be of order O(

√
NC) at NC →∞.

We should emphasize that one does not need to know
too much about quark structure of heavy hadron degrees
of freedom we have integrated out. Without loss of gen-
erality one can argue that among the multitude of con-
tributions caused by the integration over heavy hadron
degrees of freedom one can always find the required local
four–nucleon interaction the effective coupling constant of
which behaves like O(1/NC) at NC →∞. As we show be-
low this behaviour of the coupling constant of the phenom-
enological four–nucleon interaction leads to the deuteron
as bound neutron–proton state, and it is also consistent
with the large NC dependence of low–energy parameters
of the physical deuteron [17].

The effective Lagrangian of the np–system unstable
under creation of the Cooper np–pair with quantum num-
bers of the deuteron is then defined by

Lnp(x) = n̄(x) (iγµ∂µ −MN)n(x)
+p̄(x) (iγµ∂µ −MN) p(x)

− g2
V

4M2
N

j†µ(x)jµ(x) + . . . , (3.4)

where ellipses stand for low–energy interactions of the neu-
tron and the proton with other fields.

In order to introduce the interpolating local deuteron
field we should linearalize the Lagrangian (3.4). Following
the procedure described in [4–11] for the inclusion of local
interpolating meson fields in the ENJL model we get

Lnp(x)→ n̄(x) (iγµ∂µ −MN)n(x)
+p̄(x) (iγµ∂µ −MN) p(x)

+M2
0 D
†
µ(x)Dµ(x) + gVj

†
µ(x)Dµ(x)

+gVj
µ(x)D†µ(x) + . . . , (3.5)

where M0 = 2MN and Dµ(x) is a local interpolating field
with quantum numbers of the deuteron.

In order to derive the effective Lagrangian of the phys-
ical deuteron field we should integrate over nucleon fields

in the one–nucleon loop approximation [2,14,15]. The one–
nucleon loop approximation of low–energy nuclear forces
allows (i) to transfer nucleon flavours from an initial to
a final nuclear state by a minimal way and (ii) to take
into account contributions of nucleon–loop anomalies [28–
31], which are fully defined by one–nucleon loop diagrams
[29–31]. It is well–known that quark–loop anomalies play
an important role for the correct description of strong
low–energy interactions of low–lying hadrons [4–13]. We
argue the dominant role of nucleon–loop anomalies for
the correct description of low–energy nuclear forces in nu-
clear physics. We demonstrate below the dominant role of
nucleon–loop anomalies by example of the evaluation of
the effective Lagrangian of the free deuteron field.

The effective Lagrangian of the free deuteron field eval-
uated in the one–nucleon loop approximation is defined by
[14,15]: ∫

d4xLeff(x) =
∫
d4xM2

0 D
†
µ(x)Dµ(x)

−
∫
d4x

∫
d4x1d

4k1

(2π)4
e−ik1 · (x− x1)

×D†µ(x)Dν(x1)
g2

V

4π2
Πµν(k1;Q), (3.6)

where the structure function Πµν(k1;Q) is given by

Πµν(k1;Q)

=
∫
d4k

π2i
tr

{
1

MN − k̂ − Q̂− k̂1

γµ
1

MN − k̂ − Q̂
γν

}
. (3.7)

The 4–momentum Q = a k1 is an arbitrary shift of mo-
menta of virtual nucleon fields with an arbitrary para-
meter a. According to [29,31] the Q–dependent parts of
one–nucleon loop diagrams are related to the anomalies
of these diagrams, thereby, the correct evaluation of the
Q–dependence of one–nucleon loop diagrams is a great
deal of importance in the NNJL model stating a domi-
nant role of nucleon–loop anomalies. For the evaluation of
the Q–dependence of the structure function Πµν(k1;Q)
we apply the procedure invented by Gertsein and Jackiw
[29] (see also [15]):

Πµν(k1;Q)−Πµν(k1; 0) =

1∫
0

dx
d

dx
Πµν(k1;xQ)

=

1∫
0

dx

∫
d4k

π2i
Qλ

∂

∂kλ
tr

{
1

MN − k̂ − xQ̂− k̂1

γµ

× 1

MN − k̂ − xQ̂
γν

}
=

= 2

1∫
0

dx lim
k→∞

〈
Q · k
k2

tr{(MN + k̂ + xQ̂+ k̂1)γµ

×|, (MN + k̂ + xQ̂)γν}
〉

= 2 (2QµQν −Q2 gµν) + 2(kµ1Q
ν + kν1Q

µ − k1 ·Qgµν)

= −2 a(a+ 1) (k2
1 g

µν − 2 kµ1 k
ν
1 ). (3.8)
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Thus, we obtain

Πµν(k1;Q)−Πµν(k1; 0) = −2 a(a+ 1)
× (k2

1 g
µν − 2 kµ1 k

ν
1 ). (3.9)

We would like to emphasize that the r.h.s. of (3.9) is
an explicit expression completely defined by high–energy
(short–distance) NN̄ fluctuations, since the virtual mo-
mentum k is taken at the limit k →∞, and related to the
anomaly of the one–nucleon loop diagram with two vector
vertices (the VV–diagram) [29,31].

The structure function Πµν(k1; 0) has been evaluated
in [14,15] and reads

Πµν(k1; 0) =
4
3

(k2
1g
µν − kµ1 kν1 )J2(MN)

+2gµν [J1(MN) +M2
NJ2(MN)], (3.10)

where J1(MN) and J2(MN) are the quadratically and log-
arithmically divergent integrals [14,15]:

J1(MN) =
∫
d4k

π2i

1
M2

N − k2
= 4

ΛD∫
0

d|k |k 2

(M2
N + k 2)1/2

,

J2(MN) =
∫
d4k

π2i

1
(M2

N − k2)2
= 2

ΛD∫
0

d|k |k 2

(M2
N + k 2)3/2

. (3.11)

The cut–off ΛD restricts from above 3–momenta of low–
energy fluctuations of virtual neutron and proton fields
forming the physical deuteron [14,15]. As has been shown
in [14,15] the cut–off ΛD is much less than the mass of
the nucleon, MN À ΛD [14,15]. This leads to the relation
between the divergent integrals:

J1(MN) = 2M2
N J2(MN) =

4
3
Λ3

D

MN
∼ O(1/NC) (3.12)

which we use below. Note that in (3.10) we have taken into
account only the leading terms in the external momentum
expansion, i.e. the k1–expansion [14,15].

The justification of the dominance of the leading or-
der contributions in expansion in powers of external mo-
menta can be provided in the large NC approach to the
description of QCD in the non–perturbative regime. In-
deed, in QCD with the SU(NC) gauge group at NC →∞
the baryon mass is proportional to the number of quark
colours [17]: MN ∼ NC . Since for the derivation of effective
Lagrangians describing the deuteron itself and amplitudes
of processes of low–energy interactions of the deuteron
coupled to other particles all external momenta of inter-
acting particles should be kept off–mass shell, the masses
of virtual nucleon fields taken at NC →∞ are larger com-
pared with external momenta. By expanding one–nucleon
loop diagrams in powers of 1/MN we get an expansion
in powers of 1/NC . Keeping the leading order in the large
NC expansion we are leaving with the leading order contri-
butions in an external momentum expansion. We should
emphasize that anomalous contributions of one–nucleon

loop diagrams are defined by the least powers of an exter-
nal momentum expansion. This implies that in the NNJL
model effective Lagrangians of low–energy interactions are
completely determined by contributions of one–nucleon
loop anomalies. The divergent contributions having the
same order in momentum expansion are negligible small
compared with the anomalous ones due to the inequality
MN À ΛD and the limit NC → ∞. This justifies the ap-
plication of the approximation by the leading powers in
an external momentum expansion to the evaluation of the
effective Lagrangians of the deuteron coupled to itself and
other fields.

Collecting all pieces we get the structure function
Πµν(k1;Q) in the form

Πµν(k1;Q) =
4
3

(k2
1g
µν − kµ1 kν1 )J2(MN)

+2gµν [J1(MN) +M2
NJ2(MN)]

−2 a(a+ 1) (k2
1 g

µν − 2 kµ1 k
ν
1 ). (3.13)

The effective Lagrangian of the free deuteron field is then
defined by

Leff(x)

= −1
2

(
− g2

V

2π2
a(a+ 1) +

g2
V

3π2
J2(MN)

)
D†µν(x)Dµν(x)

+

(
M2

0 −
g2

V

2π2
[J1(MN) +M2

NJ2(MN)]

)
D†µ(x)Dµ(x),

(3.14)

where Dµν(x) = ∂µDν(x) − ∂νDµ(x). We have dropped
some contributions proportional to the total divergence of
the deuteron field, since ∂µDµ(x) = 0. For the derivation
of (3.14) we have used the relation∫

d4x

∫
d4x1d

4k1

(2π)4
e−ik1 · (x− x1)

×D†µ(x)Dν(x1)(k2
1g
µν − kµ1 kν1 ) =

=
1
2

∫
d4xD†µν(x)Dµν(x). (3.15)

In order to get a correct kinetic term of the free deuteron
field in the effective Lagrangian (3.14) we should set

− g2
V

2π2
a(a+ 1) = 1. (3.16)

Since a is an arbitrary real parameter, the relation (3.16)
is valid in the case of the existence of real roots. For the
existence of real roots of (3.16) the coupling constant gV

should obey the constraint g2
V ≤ 8π2 that is satisfied by

the numerical value gV = 11.319 calculated at NC = 3
[15]. Since gV ∼ O(

√
NC) at NC → ∞, (3.16) has real

solutions for any NC ≥ 3.
Due to (3.16) the effective Lagrangian of the free

deuteron field takes the form
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Leff(x) = −1
2

(
1 +

g2
V

3π2
J2(MN)

)
D†µν(x)Dµν(x)

+

(
M2

0 −
g2

V

2π2
[J1(MN) +M2

NJ2(MN)]

)
D†µ(x)Dµ(x).

(3.17)

By performing the renormalization of the wave function
of the deuteron field [14,15](

1 +
g2

V

3π2
J2(MN)

)1/2

Dµ(x)→ Dµ(x) (3.18)

and taking into account that MN À ΛD we arrive at the
effective Lagrangian of the free physical deuteron field

Leff(x) = −1
2
D†µν(x)Dµν(x) +M2

DD
†
µ(x)Dµ(x), (3.19)

where MD = M0−εD is the mass of the physical deuteron
field. The binding energy of the deuteron εD reads

εD =
17
48

g2
V

π2

J1(MN)
MN

=
17
18
QD Λ

3
D ∼ O(1/NC). (3.20)

We have used here the relation between divergent inte-
grals (3.12) and expressed the phenomenological coupling
constant gV in terms of the electric quadrupole moment
of the deuteron g2

V = 2π2QDM
2
N. The dependence of the

physical observable parameter, the binding energy of the
deuteron, on the cut–off ΛD is usual for any effective the-
ory like the NJL model [1–11].

At NC → ∞ the binding energy of the deuteron be-
haves like O(1/NC) as well as the electric quadrupole mo-
ment QD and the coupling constant of the phenomeno-
logical local four–nucleon interaction (3.1). This testifies
a self–consistency of our approach. Really, all parameters
of the physical deuteron field are of the same order ac-
cording to the large NC expansion. This means that the
vanishing of the coupling constant of the phenomenolog-
ical four–nucleon interaction (3.1) in the limit NC → ∞
entails the vanishing of all low–energy parameters of the
physical deuteron.

4 Electromagnetic properties of the deuteron

The description of the deuteron as a Cooper np–pair
changes the analysis of the electromagnetic parameters
of the deuteron given in [15], since we do not have more
a “bare” deuteron field having the magnetic dipole and
electric quadrupole moment. Therefore, for the Cooper
np–pair both the magnetic dipole and electric quadru-
pole moments have to be induced fully by the one–nucleon
loop contributions. For the self–consistent description of
the electromagnetic properties of the deuteron we can-
not deal with only the nucleon current jµ(x) given by
(3.2) and have to introduce the tensor nucleon current
[14,15]

Jµν(x) = p̄c(x)σµνn(x)− n̄c(x)σµνp(x). (4.1)

The local four–nucleon interaction producing the
deuteron as a Cooper np–pair reads now

Lint(x) = − 1
4M2

N

J†µ(x)Jµ(x). (4.2)

The baryon current Jµ(x) is defined by

Jµ(x) = −i gV [p̄c(x)γµn(x)− n̄c(x)γµp(x)]

− gT

MN
∂ν [p̄c(x)σνµn(x)− n̄c(x)σνµp(x)], (4.3)

where gT is a dimensionless phenomenological coupling
constant [15]. The contribution of the tensor nucleon cur-
rent looks like the next–to–leading term in the long–
wavelength expansion1 of an effective low–energy four–
nucleon interaction.

The effective Lagrangian of the np–system unstable
under creation of the Cooper np–pair with quantum num-
bers of the deuteron is then defined by

Lnp(x) = n̄(x) (iγµ∂µ −MN)n(x)
+p̄(x)(iγµ∂µ −MN)p(x)

− 1
4M2

N

J†µ(x)Jµ(x). (4.4)

The linearalized version of the effective Lagrangian (4.4)
containing the interpolating local deuteron field reads

Lnp(x)→ n̄(x)(iγµ∂µ−MN)n(x) + p̄(x)(iγµ∂µ−MN)p(x)

+M2
0D
†
µ(x)Dµ(x) + gVj

†
µ(x)Dµ(x) + gVj

µ(x)D†µ(x)

+
gT

M0
J†µν(x)Dµν(x) +

gT

M0
Jµν(x)D†µν(x), (4.5)

where M0 = 2MN, Dµ(x) is a local interpolating field
with quantum numbers of the deuteron and Dµν(x) =
∂µDν(x)− ∂νDµ(x).

The interactions with the tensor current give the con-
tributions only to the divergent part of the effective La-
grangian of the free deuteron field determined now by

Leff(x) =

−1
2

(
− g2

V

2π2
a(a+ 1) +

g2
V + 6gVgT + 3g2

T

3π2
J2(MN)

)
×D†µν(x)Dµν(x)

+

(
M2

0 −
g2

V

2π2
[J1(MN) +M2

NJ2(MN)]

)
×D†µ(x)Dµ(x). (4.6)

The one–nucleon loop diagrams defining the effective La-
grangian (4.6) are depicted in Fig. 1.

1 Due to proportionality MN ∼ NC this expansion is related
to the large NC expansion.
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Fig. 1. One–nucleon loop diagrams contributing in the NNJL model to the binding energy of the physical deuteron, where
nc = C n̄T is the field of anti–nucleon

Due to the relation (3.16) the effective Lagrangian of
the free deuteron field (4.6) takes the form

Leff(x) =

−1
2

(
1 +

g2
V + 6gVgT + 3g2

T

3π2
J2(MN)

)
×D†µν(x)Dµν(x)

+

(
M2

0 −
g2

V

2π2
[J1(MN) +M2

NJ2(MN)]

)
×D†µ(x)Dµ(x). (4.7)

After the renormalization of the wave function of the
deuteron field we arrive at the effective Lagrangian de-
fined by (3.19) with the binding energy of the deuteron
depending on gV and gT

εD =
17
48
g2

V

π2

J1(MN)
MN

(
1 +

48
17

gT

gV
+

24
17

g2
T

g2
V

)

=
17
18
QD Λ

3
D

(
1 +

48
17

gT

gV
+

24
17

g2
T

g2
V

)
, (4.8)

where we have used the relation between divergent inte-
grals (3.12) and expressed the phenomenological coupling
constant gV in terms of the electric quadrupole moment
of the deuteron g2

V = 2π2QDM
2
N. In order to make the

prediction for the binding energy much more definite we
have to know the relation between the phenomenological
coupling constants gV and gT. For this aim we suggest to
consider the electromagnetic properties of the deuteron.

Including the electromagnetic field by a minimal way
∂µ → ∂µ + i eAµ(x), where e and Aµ(x) are the electric
charge of the proton and the electromagnetic potential we
bring up the linearalized version of the Lagrangian (4.5)
to the form

Lnp(x)→ Lnp
ELM(x)

= n̄(x)(iγµ∂µ −MN)n(x) + p̄(x)(iγµ∂µ −MN)p(x)

+M2
0D
†
µ(x)Dµ(x) + gVj

†
µ(x)Dµ(x) + gVj

µ(x)D†µ(x)

+
gT

M0
J†µνD

µν(x) +
gT

M0
JµνD†µν(x)− e p̄(x)γµp(x)Aµ(x)

−i e gT

M0
J†µν(x)(Aµ(x)Dν(x)−Aν(x)Dµ(x))

+i e
gT

M0
Jµν(x)(Aµ(x)Dν(x)−Aν(x)Dµ(x)). (4.9)

By using this Lagrangian we should calculate fully all con-
tributions to the effective Lagrangian of the deuteron cou-
pled to an external electromagnetic field. These are the
effective Lagrangians of the Corben–Schwinger [18] and
the Aronson [19] type defining at a field theoretic level
the magnetic dipole and the electric quadrupole moment
of the deuteron, and the effective interactions which can
be identified with the contributions caused by the min-
imal inclusion of the electromagnetic field ∂µDν(x) →
(∂µ + i eAµ(x))Dν(x).

4.1 The phenomenological Corben–Schwinger
interaction

The one–nucleon loop diagrams defining in the
NNJL model effective electromagnetic interactions of the
deuteron linear in electric charge e induced by the La-
grangian (4.9) are depicted in Fig. 2. One can show that
in the 1/MN expansion corresponding to the large NC ex-
pansion due to the proportionality MN ∼ NC [17] the
one–nucleon loop diagrams in Fig. 2a and 2b are diver-
gent. Therefore, due to (3.12) at leading order in the
large NC expansion the contributions of these diagrams
can be neglected with respect to the contributions of the
diagrams in Fig. 2c and 2d defining the phenomenolog-
ical Lagrangians of the Corben–Schwinger, LCS(x), and
the Aronson, LA(x), type, respectively, in terms of the
nucleon–loop anomalies [15].

The effective Lagrangian of the diagram in Fig. 2c is
defined by [15]
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Fig. 2. One–nucleon loop diagrams describing in the NNJL model the effective Lagrangian of the deuteron coupled to an
electromagnetic field through the magnetic dipole and electric quadrupole moments, where nc = C n̄T is the field of anti–
nucleon

∫
d4xLFig. 2c(x) =∫
d4x

∫
d4x1d

4k1

(2π)4

d4x2d
4k2

(2π)4
Dβ(x)D†α(x1)Aµ(x2)

× e−i k1·x1 e−i k2·x2 ei (k1+k2)·x eg
2
V

4π2
J βαµ(k1, k2;Q).

(4.10)

In the one–nucleon loop approximation the structure func-
tion J βαµ(k1, k2;Q) is given by the momentum integral
[15]

J βαµ(k1, k2;Q) =
∫
d4 k

π2 i

× tr

{
γβ

1

MN − k̂ − Q̂
γα

1

MN − k̂ − Q̂− k̂1

· γµ 1

MN − k̂ − Q̂− k̂1 − k̂2

}
. (4.11)

The 4–vector Q = a k1 +b k2, where a and b are arbitrary
parameters, displays the dependence of the k integral in
(4.11) on a shift of a virtual momentum. According to
[29,31] a Q–dependent part of an one–nucleon loop dia-
gram is related to the anomaly of this diagram. Therefore,
the evaluation of the Q–dependence of the one–nucleon

loop diagram should play an important role in the NNJL
model. For the evaluation of the Q–dependence of the
structure function (4.11) we apply the method invented
by Gertsein and Jackiw [29] and consider the following
difference of momentum integrals

δ J βαµ(k1, k2;Q) = J βαµ(k1, k2;Q )− J βαµ(k1, k2; 0)
(4.12)

In accordance with the Gertsein–Jackiw method the dif-
ference (4.12) can be represented by the integral

δ J βαµ(k1, k2;Q) =
∫ 1

0

dx
d

d x
J βαµ(k1, k2;xQ)

=
∫ 1

0

d x

∫
d4 k

π2 i
Qλ

∂

∂ kλ

× tr

{
γβ

1

MN − k̂ − xQ̂
γα

1

MN − k̂ − xQ̂− k̂1

γµ

× 1

MN − k̂ − xQ̂− k̂1 − k̂2

}
. (4.13)

This shows that the contribution of the Q–dependent part
of the structure function (4.11) is just the surface term.
Following Gertsein and Jackiw [29] and evaluating the in-
tegral over k symmetrically we obtain
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δ J βαµ(k1, k2;Q) =

− 2
∫ 1

0

dx lim
k→∞

〈
Q · k
k4

tr{γβ (MN + k̂ + xQ̂) γα ×

×(MN + k̂ + xQ̂+ k̂1) γµ (MN + k̂ + xQ̂+ k̂1 + k̂2)}
〉
.

(4.14)

The brackets < . . . > mean the averaging over k direc-
tions. Due to the limit k →∞ we can neglect all momenta
with respect to k.

δ J βαµ(k1, k2;Q) = − 2 lim
R→∞

〈
Q · k
k4

tr{γβ k̂γαk̂γµk̂}
〉
.

(4.15)

Averaging over k–directions

lim
k→∞

kλkϕkωkρ

k4
=

1
24

(gλϕgωρ + gλωgϕρ + gλρgϕω)(4.16)

we obtain

δ J βαµ(k1, k2;Q) = − 1
12

tr(γλγβγλγαQ̂γµ

+γβγλγαγλQ̂γµ + γβQ̂γ
αγλγ

µγλ)

=
2
3

(Qαgβµ +Qβgµα +Qµgαβ).

(4.17)

Our result (4.17) agrees with the statement by Gertsein
and Jackiw [29] that the Q–dependence of one–nucleon
loop diagrams, i.e. the anomaly of the one–nucleon loop
diagram, is fully defined by the surface behavior of the
integrand of the momentum integral at a virtual momen-
tum going to infinity, k → ∞. This relates the anomalies
of the one–nucleon loop diagrams with contributions of
high–energy (short–distance) fluctuations of virtual nu-
cleon and anti–nucleon fields, i.e. the NN̄ fluctuations.

Now we can proceed to the evaluation of
J βαµ(k1, k2;Q). In order to pick up the contribu-
tion of the Q–dependent part one cannot apply the
Feynman method of the evaluation of momentum inte-
grals like (4.11). This method involves the mergence of
the factors in the denominator with the subsequent shift
of a virtual momentum. On this way one can lose the
Q–dependence by virtue of the shift at the intermediate
stage. Thereby, we have to evaluate the integral over k
without any intermediate shifts.

One can make this by applying a momentum expan-
sion related to the 1/MN expansion or that is the same
the large NC expansion [17] and keeping only the leading
terms.

J βαµ(k1, k2;Q) =

=
∫
d4 k

π2i
tr

{
γβ

MN + k̂ + Q̂

M2
N − k2

[
1 +

2 k ·Q
M2

N − k2

]

× γα MN + k̂ + Q̂+ k̂1

M2
N − k2

×

×
[

1 +
2 k · (Q+ k1)
M2

N − k2

]
γµ

MN + k̂ + Q̂+ k̂1 + k̂2

M2
N − k2

×
[

1 +
2 k · (Q+ k1 + k2)

M2
N − k2

]}
=

=
∫
d4 k

π2 i

1
(M2

N − k2)3
tr {M2

Nγ
β(k̂ + Q̂)γαγµ

+M2
Nγ

βγα(k̂ + Q̂+ k̂1)γµ

+M2
Nγ

βγαγµ(k̂ + Q̂+ k̂1 + k̂2)

+γβ(k̂ + Q̂)γα(k̂ + Q̂+ k̂1)

×γµ(k̂ + Q̂+ k̂1 + k̂2)}
[

1 +
2 k · (3Q+ 2k1 + k2)

M2
N − k2

]
=

=
1
2

∫
d4 k

π2 i

[
1

(M2
N − k2)2

+
M2

N

(M2
N − k2)3

]
× tr {γβQ̂γαγµ + γβγα(Q̂+ k̂1)γµ

+γβγαγµ(Q̂+ k̂1 + k̂2)}

+ 2
∫
d4 k

π2 i

k · (3Q+ 2k1 + k2)
(M2

N − k2)3

× tr {M2
N(γβ k̂γαγµ + γβγαk̂γµ + γβγαγµk̂)

+γβ k̂γαk̂γµk̂} = J βαµ(1) (k1, k2;Q) + J βαµ(2) (k1, k2;Q).

(4.18)

For the evaluation of J βαµ(1) (k1, k2;Q) it is sufficient to cal-
culate the trace of the Dirac matrices and integrate over
k

J βαµ(1) (k1, k2;Q) = [1 + 2J2(MN)] [(Q+ 2 k1 + k2)αgβ µ

+ (Q+ 2 k1 + k2)βgµα + (Q+ 2 k1 + k2)µgαβ

− 2 (k1 + k2)α gβ µ − 2 kβ1 g
µα], (4.19)

where J2(MN) describes a divergent contribution depend-
ing on the cut–off ΛD. Due to inequality MN À ΛD we can
neglect J2(MN) with respect to the convergent contribu-
tion. This corresponds too the accounting for the leading
contributions in the large NC expansion. Indeed, accord-
ing to (3.12) the contribution of divergent integrals is of
order O(1/NC) relative to the convergent ones.

For the evaluation of J βαµ(2) (k1, k2;Q) it is convenient,
first, to integrate over k directions and then to calculate
the trace over Dirac matrices. This gives

J βαµ(2) (k1, k2;Q) =

=
∫
d4 k

π2 i

[
1
2

M2
Nk

2

(M2
N−k2)4

− 1
6

k4

(M2
N−k2)4

]
(3Q+k1+k2)λ

×tr (γβγλγαγµ + γβγαγλγµ + γβγαγµγλ) =

= − 1
9

[1 + 6J2(MN)] [(3Q+ 2 k1 + k2)αgβ µ

+ (3Q+ 2 k1 + k2)βgµα + (3Q+ 2 k1 + k2)µgαβ ].(4.20)
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Here we have used the integrals∫
d4k

π2 i

1
(M2

N − k2)3
=

1
2M2

N

,∫
d4k

π2 i

1
(M2

N − k2)4
=

1
6M4

N

. (4.21)

Summing up the contributions we obtain

J βαµ(k1, k2;Q) =
2
3

(Qα gβ µ +Qβ gµα +Qµ gαβ)

+
8
9

[1 +
3
2
J2(MN)]

×[(2 k1 + k2)α gβ µ + (2 k1 + k2)β gµα + (2 k1 + k2)µ gαβ ]

+ [1 + 2J2(MN)][− 2 (k1 + k2)α gβµ − 2 kβ1 g
µα]. (4.22)

It is seen that the Q–dependence coincides with that ob-
tained by means of the Gertsein–Jackiw method (4.17).
Due to the arbitrariness of Q we can absorb by the Q–
term the terms having the same Lorentz structure. This
brings up the r.h.s. of (4.22) to the form

J βαµ(k1, k2;Q) =
2
3

(Qαgβµ +Qβgµα +Qµgαβ)

+ [− 2 (k1 + k2)αgβµ − 2 kβ1 g
µα]. (4.23)

Also we have dropped here the divergent contribution.
This approximation is valid due to the inequality MN À
ΛD and at leading order in the large NC expansion.

The effective Lagrangian LFig. 2c(x) determined by the
structure function (4.23) reads

LFig. 2c(x)= i e
g2

V

6π2
[(3− a) ∂µD†µ(x)Dν(x)Aν(x)

− (3− a)D†µ(x) ∂νDν(x)Aµ(x)− bD†µ(x)Dν(x) ∂µAν(x)

− (b− a)D†µ(x)Dν(x) ∂ν Aµ(x)

− (a− b) ∂ν D†µ(x)Dµ(x)Aν(x) + bD†µ(x) ∂ν Dµ(x)Aν(x)

+ 3D†µ(x)Dν(x) (∂µAν(x)− ∂ν Aµ(x))]. (4.24)

Due to the constraints ∂µD†µ(x) = ∂µDµ(x) = 0 some
terms in the Lagrangian (4.24) can be dropped out. This
gives

LFig. 2c(x) =

= i e
g2

V

6π2
[− bD†µ(x)Dν(x) ∂µAν(x)

− (b− a)D†µ(x)Dν(x) ∂νAµ(x)

− (a− b) ∂νD†µ(x)Dµ(x)Aν(x) + bD†µ(x) ∂νDµ(x)Aν(x)

+ 3D†µ(x)Dν(x) (∂µAν(x) − ∂νAµ(x))]. (4.25)

By using the relations ∂νD†µ(x) = D†νµ(x) + ∂µD
†
ν(x) and

∂νDµ(x) = Dνµ(x) + ∂µDν(x) we can rewrite the La-
grangian (4.25) as follows

LFig. 2c(x) =

= i e
g2

V

6π2
[− (a− b)D†νµ(x)Aν(x)Dµ(x)

+bDνµ(x)Aν(x)D†µ(x)

− (a− b) ∂νD†µ(x)Dν(x)Aµ(x) + bD†µ(x) ∂µDν(x)Aν(x)

− bD†µ(x)Dν(x) ∂µAν(x)− (b− a)D†µ(x)Dν(x) ∂νAµ(x)

+ 3D†µ(x)Dν(x) (∂µAν(x) − ∂νAµ(x))]. (4.26)

The subsequent transformations we perform by applying
the identity

∂νD†µ(x)Dν(x)Aµ(x) − D†µ(x) ∂µDν(x)Aν(x) =

= D†µ(x)Dν(x) (∂µAν(x)− ∂ν Aµ(x)) (4.27)

being valid up to the contribution of a total divergence
which can be omitted. Setting a = 2 b we represent the
effective Lagrangian (4.27) in the irreducible form

LFig. 2c(x) = i e
g2

V

6π2
[bD†µν(x)Aν(x)Dµ(x)

− bDµν(x)Aν(x)D†µ(x)]

+ i e
g2

V

6π2
(3− 2b)D†µ(x)Dν(x)Fµν(x),

(4.28)

where Fµν(x) = ∂µAν(x)−∂νAµ(x) is the electromagnetic
field strength tensor. Then, first two terms define the finite
contributions to the renormalization constant of the wave
function of the deuteron, whereas the last term coincides
with the well–known phenomenological interaction LCS(x)
introduced by Corben and Schwinger [18]

LCS(x) = i e
g2

V

6π2
(3− 2b)D†µ(x)Dν(x)Fµν(x) (4.29)

for the description of the charged vector field coupled to
an external electromagnetic field.

Thus, at leading order in the large NC expansion the
anomaly of the one–nucleon loop triangle VVV–diagram
with vector (V) vertices defines fully the effective La-
grangian of the Corben–Schwinger type describing the
deuteron coupled to an external electromagnetic field. In
turn, the finite the contributions to the renormalization
constant of the wave function of the deuteron we will
identify below with those induced by a minimal inclu-
sion of the electromagnetic interaction: ∂µDν(x)→ (∂µ +
i eAν(x))Dν(x). These terms are important for the cor-
rect definition of the effective Lagrangian of the deuteron
coupled to an electromagnetic field.

4.2 The phenomenological Aronson interaction

The effective Lagrangian described by the diagram in
Fig. 2d is defined by [15]
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d4xLFig. 2d(x) =∫
d4x

∫
d4x1 d

4k1

(2π)4

d4x2 d
4k2

(2π)4
Dαβ(x)D†µ ν(x1)Aλ(x2)

× e− i k1·x1 e− i k2·x2 ei (k1 + k2)·x (− e) g2
T

4π2

1
M2

D

J αβµνλ(k1, k2;Q). (4.30)

In the structure function J αβµνλ(k1, k2;Q) is represented
by the following momentum integral

J αβµνλ(k1, k2;Q) =
∫

d4k

π2 i

×tr

{
σαβ

1

MN − k̂ − Q̂
σµ ν

1

MN − k̂ − Q̂− k̂1

× γλ 1

MN − k̂ − Q̂− k̂1 − k̂2

}
.

(4.31)

The 4–vector Q = a k1 + b k2 is an arbitrary shift of a vir-
tual momentum, where a and b are arbitrary parameters.
The Q–dependent part of the structure function we obtain
by using the Gertsein–Jackiw method [15]

δ J αβµνλ(k1, k2;Q) =

− 1
12

tr(γρ σαβ γρ σµ ν Q̂ γλ + σαβ γρ σ
µ ν γρ Q̂ γλ +

+σαβ Q̂ σµ ν γρ γ
λ γρ) =

1
6

tr(σαβ Q̂ σµ ν γλ ). (4.32)

Now we should proceed to the evaluation of
J αβµνλ(k1, k2;Q). By analogy with J βαµ(k1, k2;Q)
we get

J αβµνλ(k1, k2;Q) =

=
∫

d4k

π2 i
tr

{
σαβ

MN + k̂ + Q̂

M2
N − k2

[
1 +

2 k ·Q
M2

N − k2

]

×σµ ν MN + k̂ + Q̂+ k̂1

M2
N − k2

×
[

1 +
2 k · (Q+ k1)
M2

N − k2

]
γλ

MN + k̂ + Q̂+ k̂1 + k̂2

M2
N − k2

×
[

1 +
2 k · (Q+ k1 + k2)

M2
N − k2

]}
=

=
∫
d4k

π2i

1
(M2

N − k2)3
tr {M2

N[σαβ(k̂ + Q̂)σµ νγλ

+σαβσµ ν(k̂ + Q̂+ k̂1)γλ

+σαβσµ νγλ(k̂ + Q̂+ k̂1 + k̂2)]

+σαβ(k̂ + Q̂)σµ ν(k̂ + Q̂+ k̂1)γλ

×(k̂ + Q̂+ k̂1 + k̂2)}
[

1 +
2 k · (3Q+ 2k1 + k2)

M2
N − k2

]
=

=
∫
d4k

π2i

1
(M2

N − k2)3
tr {M2

N[σαβQ̂σµ νγλ

+σαβσµ ν(Q̂+ k̂1)γλ

+σαβσµ νγλ(Q̂+ k̂1 + k̂2)]− 1
2
k2σαβQ̂σµ νγλ}

+ 2
∫
d4k

π2i

1
(M2

N − k2)4

× tr {1
2
M2

Nk
2[σαβ(3 Q̂+ 2 k̂1 + k̂2)σµ νγλ

+σαβσµ ν(3 Q̂+ 2 k̂1 + k̂2)γλ

+σαβσµ νγλ(3 Q̂+ 2 k̂1 + k̂2)]

− 1
6
k4σαβ(3 Q̂+ 2 k̂1 + k̂2)σµ νγλ} =

= J αβµνλ(1) (k1, k2;Q) + J αβµνλ(2) (k1, k2;Q). (4.33)

Integrating over k we obtain

J αβµνλ(1) (k1, k2;Q) =
1
4

[1 + 2J2(MN)] tr(σαβQ̂σµ νγλ)

+
1
2

tr [σαβσµ ν(Q̂+ k̂1)γλ + σαβσµ νγλ(Q̂+ k̂1 + k̂2)],

J αβµνλ(2) (k1, k2;Q) = −1
6

[−5
6

+ J2(MN)]

× tr[σαβ(3Q̂+ 2k̂1 + k̂2)σµ νγλ]

−1
6

tr [σαβ(3Q̂+ 2k̂1 + k̂2)σµ νγλ

+σαβσµ ν(3Q̂+ 2k̂1 + k̂2)γλ

+σαβσµνγλ(3Q̂+ 2k̂1 + k̂2)]. (4.34)

Now we should sum up the contributions and collect like
terms

J αβµνλ(k1, k2;Q) =
1
6

tr[σαβ(Q̂− 1
6

(2 k̂1 + k̂2))σµ νγλ]

+
1
6

tr [σαβσµ ν(k̂1 − k̂2)γλ]

+
1
6

tr [σαβσµ νγλ(k̂1 + 2 k̂2)]. (4.35)

It is seen that the Q–dependence agrees with that ob-
tained by the Gertsein–Jackiw method. Due to arbitrari-
ness of Q the vector (2 k̂1 + k̂2)/6 can be removed by the
redefinition of Q. This gives

J αβµνλ(k1, k2;Q) =
1
6

tr(σαβQ̂σµνγλ)

+
1
6

tr [σαβσµν(k̂1 − k̂2)γλ]

+
1
6

tr [σαβσµ νγλ(k̂1 + 2 k̂2)]. (4.36)

By evaluating the traces over Dirac matrices we obtain
the structure function leading to the following effective
Lagrangian [15]
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LFig. 2d(x) =

(− i e) g2
T

4π2

1
M2

D

[8
3
a ∂λD

†λ ν(x)Dν µ(x)Aµ(x)

+
8
3
aD†µ ν(x) ∂λDλ ν Aµ(x)

+
8
3

(b + a)D†µ ν(x)Dν λ(x) ∂µAλ(x)

+
8
3

(b− a)D†µ ν(x)Dν λ(x) ∂λAµ(x)

− 16
3
D†µ ν(x)Dν λ(x) ∂µAλ(x)

+ 8D†µ ν(x)Dν λ(x) (∂µAλ(x)− ∂λAµ(x))
]
. (4.37)

For the derivation of the effective Lagrangian (4.37) we
have used the equation of motion

∂λDµν(x) + ∂µDνλ(x) + ∂ν Dλµ(x) = 0. (4.38)

The analogous equation of motion is valid for the conju-
gated field. The term proportional to kλ2 contributing to
the effective Lagrangian in the form of a divergence of the
vector potential of the electromagnetic field ∂λAλ(x) can
be omitted by singling out the Lorentz gauge constraint
for the electromagnetic potential, i.e. ∂λAλ(x) = 0.

Collecting like terms in (4.37) we get

LFig. 2d(x) = (− i e) g2
T

4π2

1
M2

D

×
[8

3
(b + a− 1)D†µν(x)Dνλ(x) ∂µAλ(x)

+
8
3

(b− a− 3)D†µν(x)Dνλ(x) ∂λAµ(x)

+
8
3
a ∂λD

†λ ν(x)Dνµ(x)Aµ(x)

+
8
3
aD†µν(x) ∂λDλν(x)Aµ(x)

]
. (4.39)

The third and the fourth terms can be reduced by applying
the equation of motion

∂λD
λ ν(x) = −M2

DD
ν(x)

and analogous for the conjugated field. Then, setting

b + a− 1 = −b + a + 3 (4.40)

we obtain b = 2 and bring up the effective Lagrangian
(4.39) to the following irreducible form

LFig. 2d(x) =

i e
2 g2

T

3π2
a [−D†µν(x)Aν(x)Dµ(x) +Dµν(x)Aν(x)D†µ(x)]

+ i e
2 g2

T

3π2

1
M2

D

(1 + a)

×D†µν(x)Dν λ(x) (∂λAµ(x)− ∂µAλ(x)). (4.41)

The first two terms define the finite contributions to
the renormalization constant of the wave function of the

deuteron, whereas the last term coincides with the well–
known phenomenological interaction LA(x) introduced by
Aronson [19]

LA(x) = i e
2 g2

T

3π2

1
M2

D

(1 + a)D†µν(x)Dνλ(x)Fλµ(x)

(4.42)

for the description of the charged vector field coupled to
an electromagnetic field.

Thus, we have shown that the anomaly of the one–
nucleon loop triangle V TT–diagram, where V and T stand
for the vector and tensor vertices determined by the Dirac
matrices γα and σµν , respectively, calculated at leading
order in the large NC expansion defines fully the phenom-
enological Aronson Lagrangian describing the deuteron
coupled to an external electromagnetic field.

4.3 The magnetic dipole and electric quadrupole
moments of the deuteron

The effective Lagrangian describing both the magnetic
dipole and electric quadrupole moments of the deuteron
is determined by the sum of LFig. 2c(x) and LFig. 2d(x)
given by (4.28) and (4.41), respectively, and reads

δLel
eff(x) = i e

bg2
V − 4ag2

T

6π2
D†µν(x)Aν(x)Dµ(x)

− i e
bg2

V − 4ag2
T

6π2
Dµν(x)Aν(x)D†µ(x)

+ i e (3− 2b)
g2

V

6π2
D†µ(x)Dν(x)Fµν(x)

+ i e (1 + a)
2 g2

T

3π2

1
M2

D

D†µν(x)Dνλ(x)Fλµ(x),

(4.43)

where a and b are arbitrary parameters related to ambi-
guities of the one–nucleon loop diagrams with respect to
a shift of a virtual nucleon momentum. We consider them
as free parameters of the approach [15].

In order to fix these parameters it is convenient to
write down the total effective Lagrangian of the physical
deuteron coupled to an external electromagnetic field

Lel
eff(x) = −1

2
D†µν(x)Dµν(x) +M2

DD
†
µ(x)Dµ(x)

+ i e
bg2

V − 4ag2
T

6π2
D†µν(x)Aν(x)Dµ(x)

− i e
bg2

V − 4ag2
T

6π2
Dµν(x)Aν(x)D†µ(x)

+ i e (3− 2b)
g2

V

6π2
D†µ(x)Dν(x)Fµν(x)

+ i e (1 + a)
2g2

T

3π2

1
M2

D

D†µν(x)Dνλ(x)Fλµ(x).

(4.44)
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Two terms having the structure Dµν(x)Aµ(x)D†ν(x) and
D†µν(x)Aµ(x)Dν(x) should describe the interaction of the
deuteron with an external electromagnetic field included
by a minimal way, whilst the last two terms are responsi-
ble for the non–trivial contributions to the magnetic dipole
and electric quadrupole moments of the deuteron. In terms
of the parameters of the effective interactions (4.44) the
magnetic dipole moment µD, measured in nuclear magne-
tons, and the electric quadrupole moment QD, measure in
fm2, of the deuteron are given by

µD = (1 + a)
g2

T

3π2
+ (3 − 2 b)

g2
V

12π2
,

QD =

[
(2 + 2 a)

g2
T

3π2
− (3 − 2 b)

g2
V

6π2

]
1
M2

D

(4.45)

at the constraint

b
g2

V

6π2
− 2 a

g2
T

3π2
= 1 (4.46)

reducing the first two terms in effective Lagrangian (4.43)
to the standard minimal form which can be obtained from
the effective Lagrangian of the free deuteron field by the
shift ∂µDν(x)→ (∂µ + i eAµ(x))Dν(x).

Retaining the former relation between the electric
quadrupole moment and the coupling constant gV, QD =
2g2

V/π
2M2

D [15] that gives gV = 11.319, we express the
parameters a and b in terms of the coupling constants gV,
gT and the magnetic dipole moment µD:

a = −1 +
3
2
π2

g2
T

(
µD +

g2
V

π2

)
, b =

9
2
− 3π2

g2
V

µD. (4.47)

Substituting (4.47) in (4.46) we get the relation between
coupling constants gV, gT and the magnetic dipole mo-
ment µD

gT =

√√√√3
8
g2

V +
3
2
π2

(
1 +

3
2
µD

)
= 0.799 gV. (4.48)

The numerical value gT = 0.799 gV we obtain at gV =
11.319 [15], µD = 0.857 [22] and NC = 3. The sign of the
coupling constant gT should coincide with the sign of the
coupling constant gV. For the opposite sign the binding
energy εD given by (4.8) becomes negative that means the
absence of the bound neutron–proton state with quantum
numbers of the deuteron.

For the evaluation of the binding energy εD determined
by (4.8) we should keep only the leading contribution to
the coupling constant gT in the large NC expansion, i.e.

gT =

√
3
8
gV +O(1/

√
NC). (4.49)

Substituting this relation into (4.8) we can describe the
experimental value of the binding energy of the deuteron
εD = 2.225 MeV at the cut–off ΛD = 46.172 MeV. The

spatial region of virtual nucleon field fluctuations form-
ing the physical deuteron related to this value of the
cut–off 1/ΛD ∼ rD = 4.274 fm agrees good with the
experimental value of the radius of the deuteron rD =
(4.31895±0.00009) fm [22]. This result confirms estimates
obtained in [15].

The effective Lagrangian of the deuteron field coupled
to an external electromagnetic field is given by

Lel
eff(x) =

−1
2

[(∂µ − i eAµ(x))D†ν(x)− (∂ν − i eAν(x))D†µ(x)]

× [(∂µ + i eAµ(x))Dν(x)− (∂ν + i eAν(x))Dµ(x)]

+M2
DD

†
µ(x)Dµ(x)

+ i e

(
µD −

1
2
QDM

2
D

)
D†µ(x)Dν(x)Fµν(x)

+ i e

(
µD +

1
2
QDM

2
D

)
1
M2

D

D†µν(x)Dνλ(x)Fλµ(x).

(4.50)

The term of order O(e2) can be also derived in the NNJL
model by using shift ambiguities of one–nucleon loop dia-
grams. This term is required by the electromagnetic gauge
invariance of the effective Lagrangian of the deuteron
field coupled to an external electromagnetic field, but it
does not affect on the electromagnetic parameters of the
deuteron which are of order O(e).

5 Conclusion

We have shown that the Nambu–Jona–Lasinio model of
light nuclei or the NNJL model as well as the ENJL
model with chiral U(3) × U(3) symmetry [4–11] is moti-
vated by QCD. The NNJL model describes low–energy nu-
clear forces in the nuclear phase of QCD in terms of one–
nucleon loop exchanges. One–nucleon loop exchanges pro-
vide a minimal way of the transfer of nucleon flavours from
an initial to a final nuclear state and allow to take into
account contributions of nucleon–loop anomalies. These
anomalies are related to high–energy fluctuations of vir-
tual nucleon fields, i.e. the NN̄ fluctuations, and fully de-
termined by one–nucleon loop diagrams [29–31]. The dom-
inance of contributions of one–nucleon loop anomalies to
effective Lagrangians describing low–energy interactions
of the deuteron coupled to itself, nucleons and other parti-
cles we justify within the large NC expansion in QCD with
SU(NC) gauge group at NC → ∞. It is well–known that
anomalies of quark–loop diagrams play an important role
for the correct description of strong low–energy interac-
tions of low–lying hadrons [4–11]. We argue an important
role of nucleon–loop anomalies for the correct description
of low–energy nuclear forces in the nuclear physics.

It should be emphasized that nucleon–loop anomalies
can be interpreted as non–trivial contributions of the non–
perturbative quantum vacuum – the nucleon Dirac sea
[32]. In nuclear physics the influence of the nucleon Dirac
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sea on low–energy properties of finite nuclei has been
analysed within quantum field theoretic approaches in the
one–nucleon loop approximation [33]. Unfortunately, in
these approaches contributions of one–nucleon loop anom-
alies have not been taken into account. The NNJL model
allows to fill this blank.

For the derivation of the NNJL model from the first
principles of QCD we distinguish three non–perturbative
phases of QCD: 1) the low–energy quark–gluon phase
(low–energy QCD), 2) the hadronic phase and 3) the nu-
clear phase. Skipping over the intermediate low–energy
quark–gluon phase by means of the integration over high–
and low–energy quark and gluon fluctuations one ar-
rives at the hadronic phase of QCD containing only lo-
cal hadron fields with quantum numbers of mesons and
baryons coupled at energies below the SBχS scale Λχ '
1 GeV. The couplings of low–lying mesons with masses less
than the SBχS scale to low–lying octet and decuplet of
baryons can be described by Effective Chiral Lagrangians
with chiral U(3)× U(3) symmetry.

Integrating in the hadronic phase of QCD over heavy
hadron degrees of freedom with masses exceeding the
SBχS scale one arrives at the nuclear phase of QCD which
characterizes itself by the appearance of bound nucleon
states – nuclei. At low energies the result of integration
over heavy hadron degrees of freedom can be represented
in the form of phenomenological local many–nucleon in-
teractions. Some of these interactions are responsible for
creation of many–nucleon collective excitations which ac-
quire the properties of observed nuclei through nucleon–
loop and low–lying meson exchanges. This effective field
theory describes nuclei and processes of their low–energy
interactions by considering nuclei as elementary particles
represented by local interpolating fields.

Following this scenario of the description of nuclei
and their low–energy interactions from the first princi-
ples of QCD the deuteron should be produced in the nu-
clear phase of QCD by a phenomenological local four–
nucleon interaction as the Cooper np–pair with quan-
tum numbers of the deuteron. The low–energy parame-
ters of the physical deuteron, i.e. the binding energy, the
magnetic dipole µD and electric quadrupole QD moments
and so, the Cooper np–pair acquires through one–nucleon
loop exchanges. We have shown that the main part of
the kinetic term of the effective Lagrangian of the free
physical deuteron field is induced by the contribution of
high–energy (short–distance) fluctuations of virtual nu-
cleon fields related to the anomaly of the one–nucleon loop
V V –diagram with two vector vertices.

In turn, the magnetic dipole µD and electric quadru-
pole QD moments of the physical deuteron are fully de-
termined by high–energy (short–distance) fluctuations of
virtual nucleon fields related to the anomalies of the tri-
angle one–nucleon loop V V V – and V TT–diagrams. Thus,
high–energy (short–distance) fluctuations of virtual nu-
cleon fields related to anomalies of one–nucleon loop dia-
grams play a dominant role for the correct description of
electromagnetic properties of the physical deuteron in the
NNJL model.

As regards low–energy (long–distance) fluctuations of
virtual nucleon fields they give a significant contribu-
tion only to the binding energy of the deuteron εD. The
strength of low–energy (long–distance) fluctuations of vir-
tual nucleon fields is restricted by the cut–off ΛD =
46.172 MeV. The spatial region of virtual nucleon field
fluctuations forming the physical deuteron related to this
value of the cut–off 1/ΛD ∼ rD = 4.274 fm agrees good
with the experimental value of the radius of the deuteron
rD = (4.31895 ± 0.00009) fm [22]. This confirms our esti-
mates obtained in [15].

It is well–known that in the potential model approach
to the description of the deuteron the electric quadrupole
moment of the deuteron QD is caused by nuclear tensor
forces which are of great deal of importance for the exis-
tence of the deuteron as a bound np–state [34].

The proportionality of the coupling constant of the
phenomenological local four–nucleon interaction (3.3), re-
sponsible for creation of the Cooper np–pair with quantum
numbers of the deuteron, and the binding energy of the
deuteron εD (3.20) to the electric quadrupole moment QD

testifies an important role of nuclear tensor forces for the
formation of the deuteron in the NNJL model.

To the evaluation of one–nucleon loop diagrams defin-
ing effective Lagrangians describing processes of low–
energy interactions of the deuteron coupled to itself and
an electromagnetic field we apply expansions in powers of
the momenta of interacting particles and keep only leading
terms of the expansions. This approximation can be justi-
fied in the large NC expansion. Indeed, in QCD with the
SU(NC) gauge group at NC →∞ the nucleon mass is pro-
portional to the number of quark colours [17]: MN ∼ NC .
Since for the derivation of effective Lagrangians describ-
ing the deuteron and amplitudes of low–energy nuclear
processes all external momenta of interacting particles
should be kept off–mass shell, the masses of virtual nu-
cleon fields are larger compared with the external mo-
menta. An expansion of one–nucleon loop diagrams in
powers of 1/MN giving an external momentum expansion
corresponds to the expansion in powers of 1/NC . In this
case the leading order in the large NC expansion gives the
leading order contributions in the expansion in powers
of external momenta of interacting particles. We should
emphasize that anomalous contributions of one–nucleon
loop diagrams are determined by the least powers in ex-
ternal momentum expansions. Thereby, the dominance
of contributions of nucleon–loop anomalies to effective
Lagrangians describing low–energy nuclear forces in the
NNJL model is fully supported by the large NC expansion.
The accuracy of this approximation is rather high. In-
deed, the real parameter of the expansion of one–nucleon
loop diagrams is 1/M2

N ∼ 1/N2
C but not 1/MN ∼ 1/NC .

Thereby, next–to–leading corrections should be of order
O(1/N2

C).
The inclusion of the interaction of the deuteron field

with the tensor nucleon current (4.1) has given a pos-
sibility of the self-consistent description of the electro-
magnetic properties of the deuteron, the magnetic dipole
moment µD and the electric quadrupole moment QD, in



534 A.N. Ivanov et al.: The Nambu–Jona–Lasinio model of light nuclei

terms of effective interactions of the Corben–Schwinger
and Aronson types induced by one–nucleon loop diagrams.
By fitting the experimental values of the magnetic di-
pole moment µD = 0.857, measured in nucleon magne-
tons µN = e/2MN, and the electric quadrupole moment
QD = 0.286, measured in fm2, supplemented by the re-
quirement of the electromagnetic gauge invariance of the
effective Lagrangian of the deuteron field coupled to an
external electromagnetic field we have got the relation be-
tween the coupling constants gV and gT: gT = 0.799 gV

calculated at NC = 3. At leading order in the large NC
expansion we get gT =

√
3/8 gV + O(1/

√
NC). This re-

lation agrees good with that obtained in [14] (see (16) of
[14]). Due to this relation the experimental value of the
binding energy of the deuteron can be described by the
cut–off ΛD = 46.172 MeV. This corresponds to the spa-
tial region of virtual nucleon field fluctuations forming the
physical deuteron 1/ΛD ∼ rD = 4.274 fm agreeing good
with the experimental value of the radius of the deuteron
rD = (4.31895± 0.00009) fm [22].

For further applications of the NNJL model to the de-
scription of low–energy nuclear reactions of astrophysical
interest we anticipate the results in agreement with those
obtained in [35,36].

The quantum field theoretic scenario to treating nuclei
as many–nucleon collective excitations induced by phe-
nomenological local many–nucleon interactions allows a
plain extension of the NNJL model by the inclusion of
light nuclei 3He, 3H and 4He as three– and four–nucleon
collective excitations. The binding energies and other low–
energy parameters of these excitations should be deter-
mined through nucleon–loop and low–lying meson ex-
changes.

On this way it is important to notice that the spino-
rial structure of the operators of three–nucleon densi-
ties coupled to the 3He and the 3H is very much re-
stricted. One can show that only the three–nucleon den-
sities [p̄c(x)γµγ5p(x)]γµn(x) and [n̄c(x)γµγ5n(x)]γµp(x)
can lead to the appearance of the bound 3He and 3H
state, respectively. At the quantum field theoretic level
this result explains a well–known experimental fact of the
compensation of spins and magnetic dipole moments of
pp and nn pairs inside nuclei which has been put into the
foundation of the shell–model of nuclei [34].

The extension of the NNJL model by the inclusion of
3He, 3H and 4He would give a possibility to analyse within
the NNJL model the reactions of the p–p chain [37] started
with the reaction p + p → D + e+ + νe and to apply the
extended version of the NNJL model to the description of
the reactions p + D → 3He + γ, p + 3He → 4He + e+ +
νe and so on.

Chiral perturbation theory can be naturally incorpo-
rated into the NNJL model [35] in terms of Effective Chiral
Lagrangians with chiral U(3)×U(3) symmetry describing
low–lying baryons and mesons interacting at low energies
[4–11].

The quantum field theoretic description of the
deuteron within the NNJL model can be also of use for the
analysis of the properties of dibaryons. Indeed, following

Oakes [38] the deuteron can be considered as a component
of the SU(3)flavour decuplet 1̃0f of dibaryons with Y = 2
and I = 0, where Y and I are the hypercharge and the
isotopical spin, respectively. In the chiral limit the binding
energies, the magnetic dipole and electric quadrupole mo-
ments of dibaryons of the decuplet 1̃0f should be equal.
The splitting of the parameters of the components of the
decuplet 1̃0f can be obtained within Chiral perturbation
theory incorporated into the NNJL model.

The authors (A.N. Ivanov and N.I. Troitskaya) are grateful to
Prof. Randjbar–Daemi, the Head of the High Energy Section of
the Abdus Salam International Centre for Theoretical Physics
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